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Introduction

Tokamak edge and divertor plasmas can be optically thick
to the neutral hydrogen radiation

The photon absorption provides 2277288 | )
a source of excited atoms g Photo-induced

! : ! Ionization
They can ionize more easily

Consequences for ITER?
Efforts in theory and modeling are currently ongoing

1) Opacity effects in magnetic fusion

2) A transport model for radiation in fluctuating medium



Photon mean free path estimates
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Experimental observations: Ly/Da

Brightness (x10'® ph/s/m?/sr)

Ratio Lyf3 / Da in Alcator C-Mod: proof of opacity
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J. L. Terry et al., PoP (1998)

In high-density divertors
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Similar observations at JET, but somewhat weaker



Numerical simulations: ITER

B2-EIRENE code (www.eirene.de)
Kotov, Reiter, Kukushkin et al., CPP (2006)
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The electron density profile in the divertor
Is affected by line-radiation opacity



The transport model

1) D-atoms in their fundamental state (n = 1):

Boltzmann equation by Monte-carlo method

) Excited D-atoms (n > 1): stationary collisional-radiative model

i) The charged particles: fluid model (B2 code)

IV) Photons: kinetic approach, Monte-Carlo method



Radiative transfer formalism

Topic associated with astrophysics, ICF

Fundamental quantity of interest = “radiation specific intensity”
| (w, Q,1,t)

dS

o =1 cosf dadQdsat



The equation of transfer

A linear, Boltzmann-like transport equation

101 = Ol

+ Q [-
C Ot 0* w1

X absorption

/] spontaneous emission

Not retained here:
- Stimulated emission (low radiation intensity, no pop. inversion)
- Scattering (complete redistribution)



Plasma fluctuations

All of the numerical investigations done so far were made assuming
a plasma background whose typical variation scales are much larger
than the neutrals & radiation transport scales

This Is questionable
for tokamaks: I, <1 cm

Statistical approaches have been proposed recently for neutrals
Y. Marandet et al., PET 2009; PPCF (2011)
A. Mekkaoui et al., P1-6

Radiation transport?



Setting-up the formalism

1) Coarse-graining in time

> - 1 et+T | =~
I(a),Q,r,t)_><I>(w,§2,r,t):?jt dt'l (e, Q,F,t")

1) Decomposition

I=(1)+d  x=(n+ar =)+



A quasilinear-type model

G. C. Pomraning,
Linear Kinetic Theory and Particle Transport in Stochastic Mixtures (1991)

The model is suitable for regimes where |, <<, ~ <x>"

Qi+ ()1 =)~ (ora)

S+ (x))a =a7-ax(1) +(oxd) - oxa

—_—

a =(Qm+(x) " (o7-a(1)




Coarse-grained transport equation

(é [ T Xei )<| > — ]

Xer =(X)= [ ds(IY (1) (7 - Qs))e ™"

Nae =)= | ds{x(7)an(7 - Qs))e ™"

Homogeneous case: <x>, <n> are space independent

In the absence of fluctuations,
the standard radiative transfer equation is recovered



Attenuation of a radiation pencil

=

Ly-a irradiation

. N, = 5x1014 cm-3
 <T>=T_,=1eV

Saha-Boltzmann H-plasma

- Gamma PDF for T.-fluctuations
- Exponential correlation
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Why Is the penetration sensitive to fluctuations?
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The absorption coefficient x is strongly dependent on T,
X(Te)> # X(<Te>)

Similar result for the emission coefficient



Beyond the small I/l ¢, IMIt?

“The method of model coefficients” A. Brissaud and U. Frisch,
J. Math. Phys. (1974)

=)

space Space

- Same result as from the quasilinear theory (QLT) in the limit |, — O
- As in the QLT, use of the 1-point PDF and the spatial correlation function

(p+2/1yy + X))
1= ((p+1/ 1+ 1))
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Behavior at large

Z
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Summary

Opacity in Lyman series is omnipresent in divertor plasmas
with large NxL: Alcator C-Mod, ITER, commercial fusion reactor?

Line radiation trapping can be accounted for in edge simulations
by a kinetic approach

The radiation field is affected by plasma fluctuations:
here, illustration with a simple transport model

Self-consistent atom-photon simulations?



